
Trasmissione del calore. La geometria piana e cilindrica. Ciclo frigorifero combinato.

Si consideri la situazione rappresentata nell'immagine seguente nella quale c'è una parete che divide due ambienti con temperatura differente: alla sinistra della parete c'è infatti una temperatura di 0°C mentre alla destra della parete la temperatura è di 20°C. La parete è spessa, complessivamente, 30 cm ma risulta verticalmente suddivisa in due zone. I primi 25 cm (a partire dalla sinistra) sono composti da una sostanza che ha una conducibilità termica di 1W/m°C mentre i rimanenti 5 cm sono composti da un materiale caratterizzato da una conducibilità termica 5 volte più elevata. Calcolare la conducibilità termica complessiva della parete ed il calore scambiato.

Ricordiamo innanzitutto quanto detto a proposito della resistività termica nelle configurazioni monodimensionali come questa e calcoliamo la resistività termica complessiva del sistema nel modo seguente:

$$R = R_1 + R_2 = \frac{L_1}{K_1} + \frac{L_2}{K_2} = \frac{0.25m}{1 \frac{W}{m^{\circ}C}} + \frac{0.05m}{5 \frac{W}{m^{\circ}C}} = 0.26 \frac{m^{2 \circ}C}{W}$$

A questo punto la conducibilità termica complessiva del sistema è immediatamente calcolabile sfruttando la seguente relazione:

$$K = \frac{1}{R} = 3.85 \frac{W}{m^{2} {}^{o}C}$$

E' allora adesso possibile calcolare il calore scambiato sfruttando la seguente relazione:

$$q = K\Delta T = 77 \frac{W}{m^2}$$

Sia data ora una parete che separa due zone poste, rispettivamente alla temperatura di 800°C e 50°C. Tale parete è suddivisa in tre strati (a partire dalla faccia con temperatura maggiore) con le seguenti caratteristiche:

$$\begin{cases} K_1 = 1.74 \frac{W}{m^o C} \\ L_1 = 12cm \\ K_2 = 0.116 \frac{W}{m^o C} \\ L_2 = 30cm \\ K_3 = 58 \frac{W}{m^o C} \\ L_3 = 3cm \end{cases}$$

Il primo è materiale refrattario, il secondo materiale isolante e il terzo lamiera. Valutare la K dell'intera parete, il flusso termico attraverso la parete e, supponendo costante il flusso termico, la temperatura raggiunta sulla parete di suddivisione tra la zona 1 e la zona 2. Si supponga, successivamente, che la zona 2 sia composta da un materiale le cui caratteristiche fisiche sono tali da permettergli di lavorare con profitto ad una temperatura di 600°C, Valutare lo spessore della zona centrale.

Come prima cosa consideriamo la schematizzazione del problema rappresentata nella prima immagine della pagina seguente. Osserviamo poi che l K complessiva per l'intero sistema può essere facilmente ricavata sfruttando la seguente relazione:

$$K = \frac{1}{R} = \frac{1}{R_1 + R_2 + R_3} = \frac{1}{\frac{L_1}{K_1} + \frac{L_2}{K_2} + \frac{L_3}{K_3}} = 0.376 \frac{W}{m^{2 \circ} C}$$

Il flusso termico attraverso la parete sarà dunque:

$$q = K\Delta T = 282 \frac{W}{m^2}$$

$$\begin{vmatrix}
1 & & 2 & & 3 \\
800^{\circ} C & & & 50^{\circ} C
\end{vmatrix}$$

Per calcolare la temperatura alla frontiera tra il materiale refrattario e il materiale isolante usiamo nuovamente la relazione che abbiamo utilizzato per il calcolo del flusso termico che esplicitiamo nel modo seguente:

$$q = \frac{K_1}{L_1} \left(T_1 - T_2 \right)$$

dalla quale si ricava:

$$T_2 = T_1 - q \frac{L_1}{K_1} = 780,5^{\circ} C$$

Se ci mettiamo ora nel caso in cui il materiale isolante scelto sopporta una temperatura dell'ordine dei 600°C ci rendiamo immediatamente conto che, con la situazione attuale, tale materiale rischierebbe molto probabilmente di sciogliersi. Imponiamo dunque che la temperatura sulla superficie di confine tra il refrattario e l'isolante sia di 600°C e vediamo come risulta necessario modificare la struttura della parete. Perché si ottenga la situazione che abbiamo imposto, nel passaggio dalla prima superficie alla superficie di separazione tra la prima e la seconda zona la temperatura deve scendere di 200 gradi invece che dei 20 dei quali scendeva prima; sarà dunque necessario diminuire lo spessore dell'isolante in modo che il calore fluisca più velocemente (con il risultato che, come appunto è richiesto, la temperatura scende). Il flusso di calore necessario sarà il seguente:

$$q = \frac{K_1}{L_1} (T_1 - T_2) = \frac{K_1}{L_1} (T_1 - 600^{\circ} C) = 2900 \frac{W}{m^2}$$

Siccome tale flusso di calore, che noi abbiamo calcolato per il primo tratto, si deve mantenere costante attraverso tutta la parete, possiamo utilizzare il valore che abbiamo trovato per calcolare il nuovo K complessivo che sarà:

$$K = \frac{q}{(T_1 - T_4)} = \frac{2900 \frac{W}{m^2}}{(T_1 - T_4)} = 3,87 \frac{W}{m^{2} \circ C}$$

A questo punto possiamo utilizzare la relazione seguente:

$$K = \frac{1}{\frac{L_1}{K_1} + \frac{L_2}{K_2} + \frac{L_3}{K_3}}$$

che esplicitiamo in modo da ottenere:

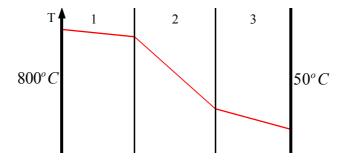
$$L_2 = \left(\frac{1}{K} - \frac{L_1}{K_1} - \frac{L_3}{K_3}\right) K_2 = 0,022m$$

Nella prima immagine della pagina seguente vediamo l'andamento qualitativa della temperatura all'interno della parete.

Per risolvere questo esercizio abbiamo fatto uso di quanto visto sulla geometria caratteristica delle pareti piani e, in particolare, abbiamo sfruttato la formula genericamente espressa nel modo seguente:

$$Q = -KA\frac{dT}{dx}$$

Passando alla geometria cilindrica, ovviamente, questa relazione si traduce nel modo seguente:


$$q = -KA\frac{dT}{dr} = -K2\pi rl\frac{dT}{dr}$$

dalla quale si ricava:

$$T_{\text{int}} - T_{est} = \frac{q}{K2\pi l} \ln \frac{r_{est}}{r_{\text{int}}}$$

ovvero, anche:

$$q = \frac{T_{\text{int}} - T_{est}}{\ln \frac{r_{est}}{r_{\text{int}}}} K 2\pi l$$

L'andamento della temperatura in funzione della distanza r avrà allora la seguente espressione:

$$T(r) = T_{\text{int}} - \frac{T_{\text{int}} - T_{est}}{\ln \frac{r_{est}}{r_{\text{int}}}} \ln \frac{r}{r_{\text{int}}}$$

espressione che deriva dalla seguente integrazione:

$$\int_{r_{\text{int}}}^{r} \frac{q}{2K\pi l} \cdot \frac{dr}{r} = -\int_{T_{\text{int}}}^{T(r)} dt$$

La resistenza termica sarà invece:

$$R = \frac{\ln \frac{r_{est}}{r_{int}}}{2K\pi l}$$

E' importante osservare che, qualora sia verificata la condizione:

$$\frac{r_{est}}{r_{int}} \le 2$$

è possibile usare l'area media aritmetica invece dell'area media logaritmica. Si osservi inoltre la netta similitudine tra le due relazioni seguenti:

$$\begin{cases} Q_{piano} = \frac{AK}{L} \Delta T \\ Q_{cilindro} = \frac{2K\pi l}{\ln \frac{r_{est}}{r_{\text{int}}}} \Delta T \end{cases}$$

Ovviamente tale similitudine si basa sul fatto di porre:

$$\frac{\overline{AK}}{r_{est} - r_{int}} = \frac{2\pi Kl}{\ln \frac{r_{est}}{r_{int}}}$$

dove è stata usata l'area media logaritmica. :

$$\overline{A} = \frac{2\pi (r_{est} - r_{int})l}{\ln \frac{r_{est}}{r_{int}}} = \frac{A_{est} - A_{int}}{\ln \frac{A_{est}}{A_{int}}}$$

La seconda relazione dell'ultimo sistema si può dunque riscrivere nel modo seguente:

$$Q = \frac{K \overline{A} \Delta T}{r_{est} - r_{int}}$$

Come abbiamo già accennato in precedenza, è a volte possibile utilizzare l'area media aritmetica così definita:

$$\overline{A} = \frac{A_{est} - A_{int}}{2}$$

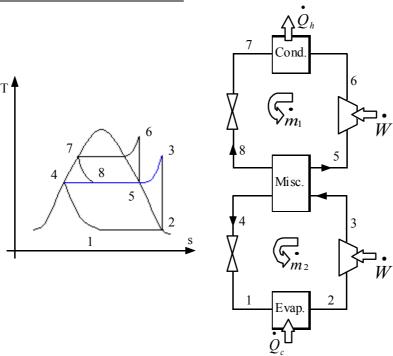
L'errore dovuto a questa approssimazione sarà comunque inferiore al 4%.

Si consideri un tubo lungo 30 cm e di diametro nominale D pari a 3". Tale tubo è rivestito da uno strato isolante di 38mm di spessore caratterizzato da un valore K. Dati i seguenti valori numerici, stabilire il calore che fluisce.

$$\begin{cases} K = 0.06 \frac{kcal}{mh^{\circ}C} \\ T_{est} = 26^{\circ}C \\ T_{int} = 200^{\circ}C \end{cases}$$

Come prima cosa riportiamo il diametro nominale del tubo in unità S.I. ottenendo:

$$D = 89mm$$


Calcoliamo ora l'area media usando prima l'area media logaritmica e poi l'area media aritmetica:

$$\begin{cases} \overline{A}_{\ln} = 1,17m^2 \\ \overline{A}_{ar} = 1,21m^2 \end{cases}$$

Appare evidente che l'errore percentuale fatto è molto piccolo. Il calore che fluisce sarà allora:

$$Q = \frac{\Delta T}{r_{est} - r_{int}} K \overline{A}_{ar} \cong 325 \frac{kcal}{h}$$

Si consideri il seguente ciclo realizzato con il Freon 12.

Studiare il ciclo in modo da poter valutare il COP. I valori numerici sono i seguenti:

$$\begin{cases} T_{iniz} = -40^{\circ} C \\ p_{1} = 0,0642MPa \\ p_{4} = 0,3MPa \\ \dot{Q}_{c} = 70kW \\ T_{7} = 322,45K \end{cases}$$

Come prima cosa osserviamo che il percorso indicato in blu sul grafico (che corrisponde all'azione del miscelatore) non è valutabile termodinamicamente come un ciclo ideale; osserviamo inoltre che, in unità S.I., la temperatura iniziale sarà:

$$T_{iniz} = 233K$$

Nell'analisi del ciclo sarà necessaria una interpolazione lineare praticamente per ogni punto. L'entalpia del punto 1 sarà l'entalpia di liquido saturo corrispondente al punto 4 poiché dal punto 4 al punto 1 si arriva per laminazione isoentalpica:

$$h_1 = h_4 = h_{liq} (0.3MPa) = 35.19 \frac{kJ}{kg}$$

Per interpolazione lineare possiamo allora giungere alla temperatura del punto 4:

$$T_4 = 272K$$

Per quanto riguarda, invece, il punto 2, si avrà:

$$\begin{cases} h_2 = h_{vap} (-40^{\circ} C) = 169,48 \frac{kJ}{kg} \\ s_2 = s_{vap} (-40^{\circ} C) = 0,7269 \frac{kJ}{kgK} \end{cases}$$

Osservando poi il diagramma appare evidente che:

$$s_2 = s_3$$

Per interpolazione lineare si ottiene dunque:

$$h_3(0.3MPa) = 195.56 \frac{kJ}{kg}$$

E' dunque possibile risalire anche alla temperatura del punto 3:

$$T_3 = 285,52K$$

Sempre per interpolazione possiamo trovare i dati caratteristici del punto 5:

$$\begin{cases} h_5 = h_{vap}(0.3MPa) = 187 \frac{kJ}{kg} \\ s_5 = s_{vap}(0.3MPa) = 0.6965 \frac{kJ}{kgK} \end{cases}$$

Osservando poi il diagramma appare evidente che:

$$s_6 = s_5$$

Per interpolazione lineare, quindi, si ricava:

$$h_6 \left(1,2MPa;0,6995 \frac{kJ}{kgK} \right) = 211,65 \frac{kJ}{kg}$$

Ricaviamo dunque la temperatura nel punto 6:

$$T_6 = 329K$$

L'entalpia del punto 8 sarà l'entalpia di liquido saturo corrispondente al punto 7 poiché dal punto 7 al punto 8 si arriva per laminazione isoentalpica:

$$h_8 = h_7 = h_{liq} (1,2MPa) = 84,12 \frac{kJ}{kg}$$

Interpolando si otterrà dunque:

$$s_7 = s_{liq}(12bar) = 0.3011 \frac{kJ}{kg}$$

e, ancora interpolando:

$$T_7 = 322,45K$$

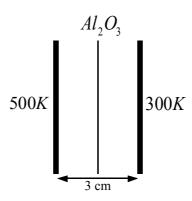
Abbiamo dunque trovato una conferma al dato iniziale assegnato. Le portate di massa si possono calcolare nel modo seguente: calcoliamo prima la portata di massa del tratto inferiore:

$$\dot{m}_2 = \frac{\dot{Q}_c}{h_2 - h_1} = 0.521 \frac{kg}{s}$$

Sfruttiamo poi l'equilibrio dovuto al miscelatore, che si traduce nella seguente relazione:

$$m_1(h_8-h_5)=m_2(h_4-h_3)$$

dalla quale si ricava:


$$\dot{m}_1 = \frac{h_4 - h_3}{h_8 - h_5} \dot{m}_2 = 0.8125 \frac{kg}{s}$$

A questo punto ho tutto quello che mi serve per calcolare il COP:

$$COP = \frac{\dot{Q}_c}{\dot{W}_1 + \dot{W}_2}$$

Trasmissione del calore. Condizionamento. Scambiatori di calore.

Sia data una parete piana infinita di allumina dello spessore di 3cm che si interpone tra due zone poste, rispettivamente, alle temperature di 500K e 300K. Sfruttando i dati contenuti nella tabella seguente calcolare la potenza termica fluente e la temperatura della sezione mediana.

T [K]	100	150	200	250	300	400	500	600
K [W/mK]	520	155	80	60	42	27	20	16

Siccome i dati assegnati prevedono che la parete di allumina lavori tra i 300 e i 500 kelvin, per ricavare l'andamento della K in funzione della temperatura dovrà interpolare i dati della tabella usando i valori relativi ai 300, 400 e 500 kelvin. L'andamento di K con la temperatura sarà quindi il seguente:

$$K(T) = K_0(1 + \beta T)$$

Interpolando dunque linearmente tra i valori dei quali si è accennato si ottiene:

$$K(T) = 73.6(1-1.493 \cdot 10^{-3} T)$$

Il valore medio che risulta con questi valori è il seguente:

$$K_{medio} = \frac{K(T_1) + K(T_2)}{2} = 73,667 \left(1 - 1,493 \cdot 10^{-3} \frac{T_1 + T_2}{2}\right) = 29,673 \frac{W}{mK}$$

La potenza termica fluente sarà allora la seguente:

$$\dot{q} = \frac{T_1 - T_2}{L} K_{medio} = 197,82 \frac{KW}{m^2}$$

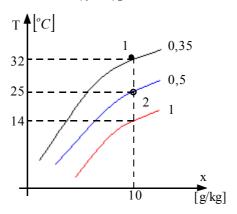
Per quanto riguarda, invece, la temperatura della sezione mediana, occorrerà considerare la seguente relazione:

$$\int_{0}^{\frac{L}{2}} dx = -\frac{1}{q} \int_{T}^{T_{m}} K(T) dT = -\frac{1}{q} \int_{T_{m}}^{T_{m}} K_{0}(1 + \beta T) dT$$

dalla quale si ricava:

$$T_{m} = \frac{-1 + \sqrt{1 + (\beta T_{1})^{2} + 2\beta T_{1} - \beta L \frac{\dot{q}}{K_{0}}}}{\beta} = 382,1K$$

Si consideri dell'aria contenuta in un volume di 3600 metri cubici e mantenuta ad una temperatura iniziale di 32°C e ad una umidità relativa del 35%. Si vuole portare tale massa d'aria ad una temperatura finale di 25°C garantendo un ricambio d'aria ogni ora. Tenendo conto del fatto che l'aria viene solo raffreddata e non deumidificata, valutare:


- <u>l'umidità specifica assoluta finale;</u>
- la temperatura di rugiada iniziale e finale;
- <u>l'umidità relativa finale;</u>
- la potenza termica necessaria per compiere questa operazione.

Per rispondere a questo quesito facciamo riferimento alla prima immagine della pagina seguente dalla quale appare evidente che i valori richiesti sono:

$$x_1 = 10 \frac{g}{Kg}$$

Infatti, non essendoci deumidificazione l'umidità assoluta rimarrà costante; per lo stesso motivo si avrà:

$$t_{r1} = t_{r2} = 14^{\circ} C$$

L'umidità relativa finale sarà:

$$\phi_2 = 50\%$$

Dalle tabelle si ricava, inoltre:

$$\begin{cases} h_1 = 58 \frac{kJ}{kg} \\ h_2 = 50 \frac{kJ}{kg} \end{cases}$$

Poniamo allora di avere una portata pari a:

$$\dot{V} = 1 \frac{m^3}{s}$$

e si conosce la densità dell'aria:

$$\rho = 1.14 \frac{kg}{m^3}$$

La potenza termica richiesta per tale operazione sarà allora:

$$\dot{Q} = \dot{m} \Delta h = \rho \dot{V} \Delta h = 9.12 kW$$

Si consideri una stanza con pianta quadrata di lato 5 m e altezza 3 m nella quale ci sono 20 persone. Ogni persona può essere schematizzata come una sorgente di calore di 60 W. All'esterno della stanza ci sono -1 °C mentre all'interno ci sono 19 °C. La parete è composta da un primo strato di mattoni di 25 cm caratterizzato da

$$\lambda_1 = 5 \frac{W}{mK}$$

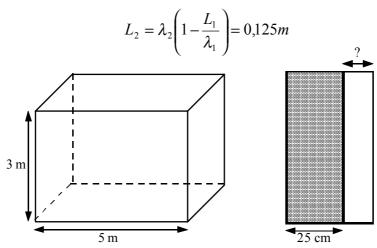
seguito da un secondo strato di materiale isolante caratterizzato da

$$\lambda_2 = 0,125 \frac{W}{mK}$$

Valutare lo spessore dello strato di isolante necessario perché la temperatura interna della stanza sia mantenuta costante. Valutare inoltre la portata in volume di aria da immettere nella stanza per controbilanciare l'ingresso di altre 20 persone.

Affinché la temperatura si mantenga costante, il calore dissipato dalle 20 persone presenti dovrà essere controbilanciato dal flusso di calore che attraversa le pareti. Il calore dissipato dalle 20 persone presenti è presto calcolato:

$$Q_{20P} = 20 \cdot 60W = 1200W$$


Dunque anche il calore scambiato dalle pareti dovrà essere di 1200 W. Ricaviamo allora la K complessiva della parete:

$$K_{tot} = \frac{Q}{A\Delta T} = 1 \frac{W}{m^{2} {}^{o}C}$$

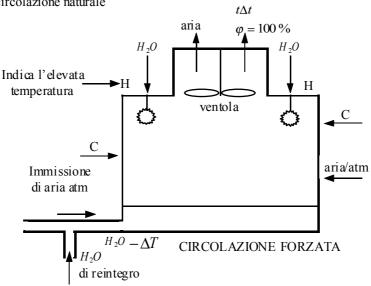
ciò significa che dovrà essere verificata la seguente relazione:

$$\frac{1}{K_{tot}} = 1 = \frac{L_1}{\lambda_1} + \frac{L_2}{\lambda_2}$$

dalla quale si ricava:

Per valutare la portata in volume di aria necessaria per bilanciare l'ingresso di altre 20 persone dobbiamo fare una ulteriore ipotesi sul tipo di trasformazione; supponiamo dunque che la trasformazione sia isobara e consideriamo la relazione seguente:

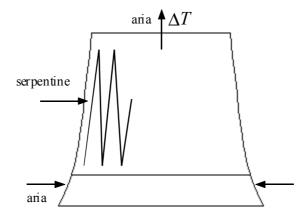
$$\dot{Q} = \dot{m} c_p \Delta T$$


da questa relazione è possibile ricavare la portata in massa:

$$\dot{m} = \frac{\dot{Q}}{c_p \Delta T} = 59,70 \cdot 10^{-3} \frac{kg}{s}$$

La portata in volume sarà allora ricavabile dalla seguente relazione:

$$\dot{V} = \frac{\dot{m}}{\rho} = \frac{59,70 \cdot 10^{-3} \frac{kg}{s}}{1,25 \frac{kg}{m^3}} = 47,36 \cdot 10^{-3} \frac{m^3}{s}$$


Ci occupiamo ora, brevemente, degli scambiatori di calore; nelle due immagini seguenti vediamo due tipi di scambiatori di calore: uno scambiatore di calore a circolazione forzata (esempio può essere il radiatore di un'auto) e uno scambiatore di calore a circolazione naturale

Consideriamo ora une centrale termoelettrica di potenza 600 MW con una portata di massa di 22084 kg/s. L'acqua entra nel condensatore alla temperatura di 40°C mentre l'aria vi entra a 27°C con una umidità relativa del 40%. L'aria esce ad una temperatura di 35°C. Calcolare la portata dell'acqua di reintegro

Come prima cosa è necessario considerare la seguente relazione:

$$m_{H_2O}(\Delta h)_{H_2O} = m_{aria}(\Delta h)_{aria}$$

Essendo:

$$\begin{cases} (\Delta h)_{H_2O} = 41.8 \frac{kJ}{kgK} \\ (\Delta h)_{aria} = 79.4 \frac{kJ}{kgK} \end{cases}$$

si ricava:

$$m_{aria} = 11611 \frac{kg}{s}$$

Per calcolare la portata dell'acqua di reintegro devo calcolare l'acqua che se ne va per evaporazione che, appunto, equivale all'acqua di reintegro; si avrà dunque:

$$\Delta \dot{m} = (x_2 - x_1) \dot{m}_{aria} = (0.037 - 0.0085) \dot{m}_{aria} = 330.91 \frac{kg}{s}$$

Scambiatori di calore. Raggio critico di isolamento. Alette.

<u>Determinare lo stato finale (trascurando le perdite) di una massa di vapore che fluisce lungo un tubo di 800 metri con diametro interno di 35 mm e diametro esterno di 40 mm. La parte interna del tubo è in ferro che è caratterizzato da:</u>

$$K_{Fe} = 58 \frac{W}{m^{o}C}$$

e gestisce una portata di vapore saturo pari a:

$$G = 0.3 \frac{kg}{s}$$

<u>Il vapore entra, come vapore saturo, con una pressione di 15 bar. I 40 mm di rivestimento sono un isolante con la seguente caratteristica:</u>

$$K_{isol} = 0.06 \frac{W}{m^{\circ}C}$$

Sono forniti, inoltre, i seguenti dati:

$$\begin{cases} h_{\text{int}(vapore-tubo)} = 23300 \frac{W}{m^{2} {}^{o}C} \\ h_{est(isolante-aria))} = 23.3 \frac{W}{m^{2} {}^{o}C} \\ T_{est} = 20 {}^{o}C \end{cases}$$

Le condizioni iniziali sono le seguenti:

$$\begin{cases} p_{vap}^{0} = 15bar \\ T_{vap} = 198,32^{\circ}C \\ h_{vap}^{0} = 2792 \frac{kJ}{kgK} \end{cases}$$

Ipotizzando che non ci siano perdite di carico e che il vapore non condensi tutto (ovvero buona parte rimarrà vapore), possiamo supporre che rimangano costanti la temperatura e la pressione del vapore. Bilanciamo dunque come segue la potenza termica:

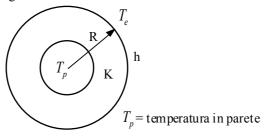
$$G(h^1 - h^2) = 2KL\pi(T_{\text{int}} - T_{est}) = \dot{Q}$$
(1)

Possiamo poi calcolare il K totale tramite la seguente relazione.

$$K_{tot} = \left(\frac{1}{h_i R_i} + \frac{\ln \frac{R_e}{R_i}}{K_{Fe}} + \frac{\ln \frac{R_e + s}{R_e}}{K_{iso}} + \frac{1}{h_e (R_e + s)}\right)^{-1} = 0.053 \frac{W}{m^o C}$$

Combinando allora le ultime due relazioni scritte, il secondo membro della relazione (1) diventa:

$$\dot{Q} = 2\pi \cdot 800 \cdot 0.053 \frac{W}{m^{\circ} C} (198.32 - 20) = 47500W$$


Dunque si avrà:

$$h^{2} = h^{1} - \frac{\dot{Q}}{G} = 2792 \frac{kJ}{kgK} - \frac{47500W}{0.3 \frac{kg}{s}} = 2634 \frac{kJ}{kgK}$$

Ciò ci fa dire che il vapore è ancora saturo e la ΔT utilizzata è corretta; ci sarà un ΔT di variazione ma sarà minimo. Valutiamo ora la quantità di vapore condensato:

$$x^{2} = \frac{h^{2} - h_{liq}}{h_{van} - h_{liq}} = \frac{2634 - 845}{2792 - 845} = 0,92$$

Il tubo dell'esercizio precedente è isolato; l'isolamento è fatto per aumentare la resistenza termica. Aumentando il raggio dell'isolante intorno al tubo si aumenta la superficie di scambio; possiamo dunque affermare che esiste un valore limite del raggio dell'isolante oltre al quale c'è uno scambio di potenza non desiderato. Tale valore limite dipende dai coefficienti di conduzione e di convezione dei materiali. Questo raggio è detto raggio di isolamento critico. Consideriamo dunque la seguente figura:

Si avrà che:

$$\dot{Q} = \frac{T_p - T_e}{\frac{\ln \frac{R}{r}}{2\pi LK} + \frac{1}{2\pi RLh}}$$

Deriviamo per vedere il comportamento in funzione del raggio esterno; eliminando i termini che so già essere positivi, mi rimane:

 $\frac{1}{RK} - \frac{1}{R^2 h} \ge 0$

ovvero:

 $\frac{Rh - K}{R^2 Kh} \ge 0$

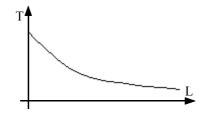
e quindi:

 $Rh - K \ge 0$

da cui:

$$R \ge \frac{K}{h}$$

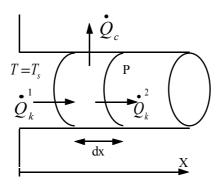
Una volta raggiunto tale valore, quindi, si ha il raggio critico, oltre il quale avviene scambio di calore.


Ci occupiamo ora delle alette, ovvero delle strutture laminari utilizzate in presenza di moti convettivi per aumentare la superficie di scambio termico. Anche in questo caso ci sono dimensioni critiche oltre le quali l'aletta ha uno scarso rendimento: il rendimento (o efficienza) è così definito:

$$\varepsilon = \frac{\dot{Q}_{al}}{\dot{Q}_{s}}$$

ovvero si tratta del rapporto tra il calore scambiato in presenza dell'aletta e il calore scambiato in assenza dell'aletta. Consideriamo ora la seguente figura:

L'andamento della temperatura con la lunghezza dell'aletta è il seguente:



Siccome la temperatura decresce, l'ultima parte dell'aletta non entra in gioco e quindi è inutile. Occupiamoci ora di un'aletta a spillo (con sezione circolare) per la quale si faccia riferimento all'immagine seguente. Si avrà ovviamente che:

$$-\frac{d\dot{Q}_k}{dx} = \frac{d\dot{Q}_c}{dx}$$

dalla quale si ricava:

$$\frac{d}{dx}\left(-KA\frac{dT}{dx}\right)dx = hPdx\left(T - T_f\right)$$

Il primo membro dell'ultima relazione scritta deriva ovviamente dalla conduzione mentre il secondo membro deriva dalla convezione e proprio nel secondo membro vediamo apparire la temperatura del fluido. Riscriviamo dunque l'ultima relazione nel modo seguente:

$$\frac{d^2T}{dx^2} = \frac{hP}{KA} \left(T_f - T \right)$$

ovvero:

$$\frac{d^2T}{dx^2} = M^2 \left(T_f - T \right)$$

dalla quale si ricava:

$$\frac{d^2T}{dx^2} - M^2 \Delta T = 0$$

Per sapere quale sia il ΔT limite entro il quale avere uno scambio termico sensato dobbiamo risolvere l'ultima equazione scritta ricavando:

$$\Delta T = C_1 e^{Mx} + C_2 e^{-Mx}$$

La condizione al contorno è la seguente:

$$T(x=0)=T_s$$

dove, a secondo membro, vediamo apparire la temperatura del solido al quale l'aletta è attaccata. Sfruttando dunque questa condizione al contorno si ottiene:

$$T_s - T_f = C_1 + C_2$$

Ora abbiamo bisogno di una ulteriore condizione al contorno; abbiamo in questo caso tre possibilità:

1) La prima possibilità sarebbe quella di considerare l'aletta di lunghezza infinita. In questo caso la temperatura finale dell'aletta sarebbe uguale alla temperatura del fluido e quindi non ci sarebbe scambio di calore (ovviamente questa condizione non è assolutamente utile). Dal punto di vista dei conti si avrebbe:

$${L = \infty} \Rightarrow \Delta T = (T_s - T_f)e^{-Mx}$$

Questa condizione non è utile perché, come abbiamo visto in precedenza, un pezzo dell'aletta non contribuisce e quindi non possiamo pensare ad alette di lunghezza infinita.

2) Una seconda condizione possibile (che è anche la più usata) è la seguente:

$$\dot{Q}(L) = 0$$

dalla quale si ricava:

$$\Delta T = \left(T_s - T_f \left(\frac{e^{Mx}}{1 + e^{2ML}} + \frac{e^{-Mx}}{1 + e^{-2ML}} \right) \right)$$

Per considerazioni legate ai calcoli, molto spesso non si usa L ma si usa:

$$L^{I} = L + \frac{R}{2}$$

dove R è il raggio dell'aletta.

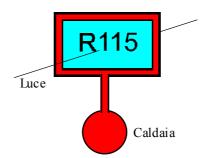
3) L'ultima possibile condizione, giusta ma poco utilizzata, è la seguente:

$$d\overset{\bullet}{Q}_{cond}(L) = d\overset{\bullet}{Q}_{conv}(L)$$

dalla qual si ricava:

$$\Delta T = (T_s - T_f) \frac{\cosh(M)(L - x) + \frac{h}{MK} \sinh(M)(L - x)}{\cosh(hML) + \frac{h}{MK} \sinh(L)}$$

Questa relazione è comunque approssimata poiché h, K e il perimetro sono anch'essi in funzione di x.

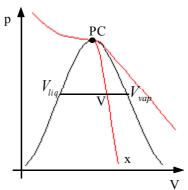

Indice delle esercitazioni sperimentali (Prof. Marchesi)

Esercitazione sperimentale numero 1	Raggiungimento del punto critico del Freon.	5 Maggio 1999
Esercitazione sperimentale numero 2	Misuratori di umidità.	12 Maggio 1999

Raggiungimento del punto critico del Freon.

Questa esercitazione sperimentale si basa sulla semplice osservazione che un sistema in equilibrio al quale viene fornito calore sposta il suo equilibrio.

Il complesso sperimentale necessario è veramente molto limitato: basta infatti avere una caldaia che fornisce calore facendo circolare del fluido caldo intorno ad un contenitore contenente il Freon (R115). In tale contenitore sono presenti due oblò che permettono ad un fascio luminoso di attraversare la massa di Freon utilizzata. Quando si raggiunge il punto critico a causa del fenomeno dell'opalescenza critica, la luce viene riflessa in maniera diversa e non vediamo più il fascio luminoso che supera i due oblò. Nell'esperimento vediamo come il pelo libero del liquido scompaia quando si raggiunge il punto critico: in quella situazione, infatti, non siamo più in grado di distinguere il liquido dal vapore.


Consideriamo la seguente relazione che vale quando si considerino grandezze che godono della proprietà additiva:

$$g = xg_{vap} + (1 - x)g_{liq}$$

dove g è la generica grandezza ed x il titolo. Da questa relazione si ricava:

$$x = \frac{g - g_{liq}}{g_{vap} - g_{liq}}$$

Vediamo ora il seguente grafico, valido per una qualsiasi sostanza:

Quando si è sotto la linea di transizione, per definizione il titolo è:

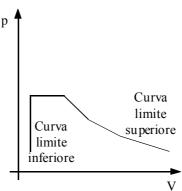
$$x = \frac{M_{vap}}{M}$$

mentre la frazione di liquido sarà, ovviamente:

$$x_{liq} = \frac{M_{liq}}{M} = \frac{M - M_{vap}}{M} = 1 - x$$

Il volume massico potrà dunque essere espresso nel modo seguente:

$$v = \frac{V}{M} = \frac{V_{liq} + V_{vap}}{M} = \frac{v_{liq} M_{liq}}{M} + \frac{v_{vap} M_{vap}}{M} = v_{liq} (1 - x) + v_{vap} x = v_{liq} + x (v_{vap} - v_{liq})$$


da cui si ricava:

$$x = \frac{v - v_{liq}}{v_{vap} - v_{liq}}$$

Si avrà inoltre:

$$\frac{V_{vap}}{V_{liq}} = \frac{M_{vap}v_{vap}}{M_{liq}v_{liq}} = \frac{v - v_{liq}}{v_{vap} - v} \cdot \frac{v_{vap}}{v_{liq}}$$

Il diagramma (p,V) per il Freon è invece il seguente:

La formula chimica dell'R115 è la seguente:

$$CF_3CF_2C$$

ed ha massa molecolare

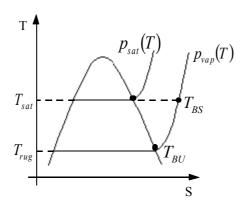
$$Mm_{R115} = 154,5 \frac{kg}{kmol}$$

mentre i suoi dati critici sono i seguenti:

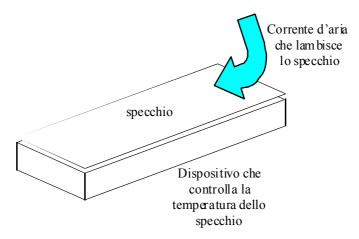
$$\begin{cases} T_{Cr} = 80^{\circ} C \\ p_{Cr} = 3.16MPa \end{cases}$$

$$v_{Cr} = 1,630 \cdot 10^{-3} \frac{m^{3}}{kg}$$

Una piccola tabella con le proprietà di questo fluido può essere la seguente:


t [°C]	P [Mpa]	$V\left[m^3/kg\right]$
20	0,80	$7,6 \cdot 10^{-4}$
30	1,04	$7,94 \cdot 10^{-4}$
50	1,68	$8,75 \cdot 10^{-4}$
70	2,57	$1,02 \cdot 10^{-3}$

Per valori inferiori al volume critico ad una determinata temperatura, il titolo diminuisce fino a diventare negativo; per valori superiori, invece, aumentando la temperatura il titolo aumenta fino ad uscire dal bifase.


Durante l'esperienza abbiamo visto moti particellari detti moti convettivi; questi sono dovuti al fatto che, scaldando il liquido, si generano dei gradienti di volume che spostano le particelle verso l'alto vincendo la gravità terrestre.

Misuratori di umidità.

Come prima cosa facciamo riferimento al seguente grafico:

L'umidità si può calcolare con diversi metodi sfruttando i dati che appaiono in questo grafico; vediamone alcuni. Il primo metodo che vediamo si basa sulla determinazione della temperatura di rugiada e prende il nome di principio di misurazione di Dew Point. La configurazione sperimentale relativa a tale metodo è rappresentata nella figura seguente:

Quando lo specchio è mantenuto alla temperatura di rugiada, l'aria, passando sullo specchio, condensa; è quindi possibile regolare la temperatura dello specchio fino a quando non appare la rugiada, a quel punto sappiamo di aver raggiunto la temperatura di rugiada. Per capire quando inizia a formarsi la rugiada sullo specchio si usa un raggio luminoso puntato sullo specchio e si misura la luce riflessa; quando infatti inizia a formarsi il film di umidità la luce riflessa cambia. Sfruttando dei dispositivi elettronici programmati per misurare la temperatura dello specchio appena la luce riflessa cambia, abbiamo una buona precisione nella misura della temperatura di rugiada. La temperatura di bulbo secco la si misura, invece, prima che l'aria entri nel dispositivo. Nota dunque la temperatura di rugiada si ricava la pressione di vapore e quindi si misura l'umidità relativa tramite la relazione:

$$\varphi = \frac{p_{vap}(T)}{p_{sat}(T)}$$

Un altro metodo di misura dell'umidità si basa sulla proprietà che i materiali hanno di cambiare le loro proprietà elettriche al variare dell'umidità (tale proprietà è legata all'assorbimento dell'acqua da parte del materiale stesso). Nella trattazione dell'umidità ha particolare importanza il diagramma psicrometrico (che si può vedere in dettaglio in appendice). Il diagramma psicrometrico riporta in ascisse la temperatura di bulbo secco (ovvero l'aria così com'è) mentre in ordinate rappresenta l'umidità relativa.

Facendo riferimento al diagramma psicrometrico vediamo come è possibile deumidificare un ambiente: come si nota non sarà possibile deumidificare l'ambiente mantenendo costante la temperatura; si dovrà prima far scendere la temperatura in modo da eliminare l'acqua e poi riportare l'ambiente alla temperatura desiderata con una struttura di post- riscaldamento.

Indice delle tabelle

Tabella numero 1	Proprietà termodinamiche dell'acqua: liquido saturo – vapore saturo in funzione della temperatura di saturazione.
Tabella numero 2	• Proprietà termodinamiche dell'acqua: liquido saturo – vapore saturo in funzione della pressione di saturazione.
Tabella numero 3	Proprietà termodinamiche dell'acqua: vapore surriscaldato.
Tabella numero 4	Proprietà termodinamiche dell'acqua: liquido compresso
Tabella numero 5	• Proprietà termodinamiche del Freon-12 (diclorodifluorometano): liquido saturo – vapore saturo in funzione della temperatura di saturazione.
Tabella numero 6	• Proprietà termodinamiche del Freon-12 (diclorodifluorometano): vapore surriscaldato.
Tabella numero 7	Proprietà termodinamiche dell'aria a bassa pressione.
Tabella numero 8	Poteri calorifici vari.
Tabella numero 9	Proprietà di alcuni gas perfetti.

 $\label{lem:top:continuous} Tabella\ numero\ l$ Proprietà termodinamiche dell'acqua: liquido saturo – vapore saturo in funzione della temperatura di saturazione.

		Volume	Volume massico		Entalpia		Entropia		
			/kg		[kJ/kg]			[kJ/(kgK)]	
	l p ·			T' '1		* 7			
Temp. T	Pressione	Liquido	Vapore	Liquido	Vaporizz.	Vapore	Liquido	Vaporizz.	Vapore
[°C]	assoluta p	saturo	saturo	saturo		saturo	saturo		saturo
	[kPa]	$oldsymbol{v}_f$	$v_{\scriptscriptstyle g}$	h_f	h_{fg}	h_g	\boldsymbol{s}_f	S_{fg}	s_g
0,01	0,6113	0,001000	206,14	0,01	2501,3	2501,4	0,0000	9,1562	9,1562
5	0,8721	0,001000	147,12	20,98	2489,6	2510,6	0,0761	8,9496	9,0257
10	1,2276	0,001000	106,38	42,01	2477,7	2519,8	0,1510	8,7498	8,9008
15	1,7051	0,001001	77,93	62,99	2465,9	2528,9	0,2245	8,5569	8,7814
20	2,339	0,001002	57,79	83,96	2454,1	2538,1	0,2966	8,3706	8,6672
25	3,169	0,001003	43,36	104,89	2442,3	2547,2	0,3674	8,1905	8,5580
30	4,246	0,001004	32,89	125,79	2430,5	2556,3	0,4369	8,0164	8,4533
35	5,628	0,001006	25,22	146,68	2418,6	2565,3	0,5053	7,8478	8,3531
40	7,384	0,001008	19,52	167,57	2406,7	2574,3	0,5725	7,6845	8,2570
45	9,593	0,001010	15,26	188,45	2394,8	2583,2	0,6387	7,5261	8,1648
50	12,349	0,001012	12,03	209,33	2382,7	2592,1	0,7038	7,3725	8,0763
55	15,758	0,001015	9,568	230,23	2370,7	2600,9	0,7679	7,2234	7,9913
60	19,940	0,001017	7,671	251,13	2358,5	2609,6	0,8312	7,0784	7,9096
65	25,03	0,001020	6,197	272,06	2346,2	2618,3	0,8935	6,9375	7,8310
70	31,19	0,001023	5,042	292,98	2333,8	2626,8	0,9549	6,8004	7,7553
75	38,58	0,001026	4,131	313,93	2321,4	2635,3	1,0155	6,6669	7,6824
80	47,39	0,001029	3,407	334,91	2308,8	2643,7	1,0753	6,5369	7,6122
85	57,83	0,001033	2,828	355,90	2296,0	2651,9	1,1343	6,4102	7,5445
90	70,14	0,001036	2,361	376,92	2283,2	2660,1	1,1925	6,2866	7,4791
95	84,55	0,001040	1,982	397,96	2270,2	2668,1	1,2500	6,1659	7,4159
100	p [MPa]	0.001011	4 (=40	110.01		A / = / 1	1.00.00		- 2 - 1 - 2
100	0,10135	0,001044	1,6729	419,04	2257,0	2676,1	1,3069	6,0480	7,3549
105	0,12082	0,001048	1,4194	440,15	2243,7	2683,8	1,3630	5,9328	7,2958
110	0,14327	0,001052	1,2102	461,30	2230,2	2691,5	1,4185	5,8202	7,2387
115	0,16906	0,001056	1,0366	482,48	2216,5	2699,0	1,4734	5,7100	7,1833
120	0,19853	0,001060	0,8919	503,71	2202,6	2706,3	1,5276	5,6020	7,1296
125	0,2321	0,001065	0,7706	524,99	2188,5	2713,5	1,5813	5,4962	7,0775
130	0,2701	0,001070	0,6685	546,31	2174,2	2720,5	1,6344	5,3925	7,0269
135	0,3130	0,001075	0,5822	567,69	2159,6	2727,3	1,6870	5,2907	6,9777
140	0,3613	0,001080	0,5089	589,13	2144,7	2733,9	1,7391	5,1908	6,9299
145 150	0,4154 0,4758	0,001085 0,001091	0,4463 0,3928	610,63 632,20	2129,6 2124,3	2740,3	1,7907	5,0926 4,9960	6,8833
155	0,4738	0,001091	0,3928	653,84	2098,6	2746,5 2752,4	1,8418 1,8925	4,9900	6,8379 6,7935
160	0,5431	0,001096	0,3468	675,55	2098,6	2758,1	1,8923	4,8075	6,7502
165	0,7005	0,001102	0,3071	697,34	2062,6	2763,5	1,9427	4,8073	6,7078
170	0,7003	0,001108	0,2727	719,21	2000,2	2768,7	2,0419	4,6244	6,6663
175	0,7917	0,001114	0,2428	741,17	2049,3	2773,6	2,0419	4,5347	6,6256
180	1,0021	0,001121	0,2108	763,22	2032,4	2778,2	2,1396	4,4461	6,5857
185	1,1227	0,001127	0,17409	785,37	1997,1	27782,4	2,1390	4,3586	6,5465
190	1,1227	0,001134	0,17409	807,62	1977,1	2782,4	2,1879	4,2720	6,5079
195	1,3978	0,001141	0,13034	829,98	1978,8	2790,0	2,2835	4,2720	6,4698
200	1,5538	0,001149	0,141,03	852,45	1940,7	2793,2	2,3309	4,1014	6,4323
205	1,7230	0,001137	0,12730	875,04	1940,7	2796,0	2,3780	4,0172	6,3952
210	1,9062	0,001104	0,11321	897,76	1921,0	2798,5	2,4248	3,9337	6,3585
215	2,104	0,001173	0,09479	920,62	1879,9	2800,5	2,4714	3,8507	6,3221
413	2,104	0,001101	0,07777	720,02	1017,7	2000,3	۵,7/17	5,0501	0,3441

		Volume	massico		Entalpia			Entropia	
		m^3	/kg		[kJ/kg]			[kJ/(kgK)]	
Temp. T	Pressione	Liquido	Vapore	Liquido	Vaporizz.	Vapore	Liquido	Vaporizz.	Vapore
[°C]	assoluta p	saturo	saturo	saturo	vuporizz.	saturo	saturo	vaporizz.	saturo
	[kPa]				h			g	
		v_f	v_{g}	h_f	h_{fg}	h_g	s_f	S_{fg}	S_g
220	2,318	0,001190	0,08619	943,62	1858,5	2802,1	2,5178	3,7683	6,2861
225	2,548	0,001199	0,07849	966,78	1836,5	2803,3	2,5639	3,6863	6,2503
230	2,795	0,001209	0,07158	990,12	1813,8	2804,0	2,6099	3,6047	6,2146
235	3,060	0,001219	0,06537	1013,62	1790,5	2804,2	2,6558	3,5233	6,1791
240	3,344	0,001229	0,05976	1037,32	1766,5	2803,8	2,7015	3,4422	6,1437
245	3,648	0,001240	0,05471	1061,23	1741,7	2803,0	2,7472	3,3612	6,1083
250	3,973	0,001251	0,05013	1085,36	1716,2	2801,5	2,7927	3,2802	6,0730
255	4,319	0,001263	0,04598	1109,73	1689,8	2799,5	2,8383	3,1992	6,0375
260	4,688	0,001276	0,04221	1134,37	1662,5	2796,9	2,8838	3,1181	6,0019
265	5,081	0,001289	0,03877	1159,28	1634,4	2793,6	2,9294	3,0368	5,9662
270	5,499	0,001302	0,03564	1184,51	1605,2	2789,7	2,9751	2,9551	5,9301
275	5,942	0,001317	0,03279	1210,07	1574,9	2785,0	3,0208	2,8730	5,8938
280	6,412	0,001332	0,03017	1235,99	1543,6	2779,6	3,0668	2,7903	5,8571
285	6,909	0,001348	0,02777	1262,31	1511,0	2773,3	3,1130	2,7070	5,8199
290	7,436	0,001366	0,02557	1289,07	1477,1	2766,2	3,1594	2,6227	5,7821
295	7,993	0,001384	0,02354	1316,3	1441,8	2758,1	3,2062	2,5375	5,7437
300	8,581	0,001404	0,02167	1344,0	1404,9	2749,0	3,2534	2,4511	5,7045
305	9,202	0,001425	0,019948	1372,4	1366,4	2738,7	3,3010	2,3633	5,6643
310	9,856	0,001447	0,018350	1401,3	1326,0	2727,3	3,3493	2,2737	5,6230
315	10,547	0,001472	0,016867	1431,0	1283,5	2714,5	3,3982	2,1821	5,5804
320	11,274	0,001499	0,015488	1461,5	1238,6	2700,1	3,4480	2,0882	5,5362
330	12,845	0,001561	0,012996	1525,3	1140,6	2665,9	3,5507	1,8909	5,4417
340	14,586	0,001638	0,010797	1594,2	1027,9	2622,0	3,6594	1,6763	5,3357
350	16,513	0,001740	0,008813	1670,6	893,4	2563,9	3,7777	1,4335	5,2112
360	18,651	0,001893	0,006945	1760,5	720,5	2481,0	3,9147	1,1379	5,0526
370	21,03	0,002213	0,004925	1890,5	441,6	2332,1	4,1106	0,6865	4,7971
374,14	22,09	0,003155	0,003155	2099,3	0	2099,3	4,4298	0	4,4298

 $Tabella\ numero\ 2$ Proprietà termodinamiche dell'acqua: liquido saturo – vapore saturo in funzione della pressione di saturazione.

Volume massico					Entalpia		Entropia			
		-	-							
			/kg]		[kJ/kg]			[kJ/(kgK)]		
Pressione	Temp. T	Liquido	Vapore	Liquido	Vaporizz.	Vapore	Liquido	Vaporizz.	Vapore	
assoluta p	[°C]	saturo	saturo	saturo		saturo	saturo		saturo	
[kPa]		$oldsymbol{v}_f$	$v_{\scriptscriptstyle g}$	$h_f^{}$	h_{fg}	$h_{_{g}}$	s_f	S_{fg}	S_g	
0,6113	0,01	0,001000	206,14	0,01	2501,3	2501,4	0,0000	9,1562	9,1562	
1,0	6,98	0,001000	129,21	29,30	2484,9	2514,2	0,1059	8,8697	8,9756	
1,5	13,03	0,001001	87,98	54,71	2470,6	2525,3	0,1957	8,6322	8,8279	
2,0	17,50	0,001001	67,00	73,48	2460,0	2533,5	0,2607	8,4629	8,7237	
2,5	21,08	0,001002	54,25	88,49	2451,6	2540,0	0,3120	8,3311	8,6432	
3,0	24,08	0,001003	45,67	101,05	2444,5	2545,5	0,3545	8,2231	8,5776	
4,0	28,96	0,001004	34,80	121,46	2431,9	2554,4	0,4226	8,0520	8,4746	
5,0	32,88	0,001005	28,19	137,82	2423,7	2561,5	0,4764	7,9187	8,3951	
7,5	40,29	0,001008	19,24	168,79	2406,0	2574,8	0,5764	7,6750	8,2515	
10	45,81	0,001010	14,67	191,83	2392,8	2584,7	0,6493	7,5009	8,1502	
15	53,97	0,001014	10,02	225,94	2373,1	2599,1	0,7549	7,2536	8,0085	
20	60,06	0,001017	7,649	251,40	2358,3	2609,7	0,8320	7,0766	7,9085	
25	64,97	0,001020	6,204	271,93	2346,3	2618,2	0,8931	6,9383	7,8314	
30	69,10	0,001022	5,229	289,23	2336,1	2625,3	0,9439	6,8247	7,7686	
40	75,87	0,001027	3,993	317,58	2319,2	2636,8	1,0259	6,6441	7,6700	
50	81,33	0,001030	3,240	340,49	2305,4	2645,9	1,0910	6,5029	7,5939	
75	91,78	0,001037	2,217	384,39	2278,6	2663,0	1,2130	6,2434	7,4564	
p [Mpa]										
0,100	99,63	0,001043	1,6940	417,46	2258,0	2675,5	1,3026	6,0568	7,3594	
0,125	105,99	0,001048	1,3749	444,32	2241,0	2685,4	1,3740	5,9104	7,2844	
0,150	111,37	0,001053	1,1593	467,11	2226,5	2693,6	1,4336	5,7897	7,2233	
0,175	116,06	0,001057	1,0036	486,99	2213,6	2700,6	1,4849	5,6868	7,1717	
0,200	120,23	0,001061	0,8857	504,70	2201,9	2706,7	1,5301	5,5970	7,1271	
0,225	124,00	0,001064	0,7933	520,72	2191,3	2712,1	1,5706	5,5173	7,0878	
0,250	127,44	0,001067	0,7187	535,37	2181,5	2716,9	1,6072	5,4455	7,0527	
0,275	130,60	0,001070	0,6573	548,89	2172,4	2721,3	1,6408	5,3801	7,0209	
0,300	133,55	0,001073	0,6058	561,47	2163,8	2725,3	1,6718	5,3201	6,9919	
0,325	136,30	0,001076	0,5620	573,25	2155,8	2729,0	1,7006	5,2646	6,9652	
0,350	138,88	0,001079	0,5243	584,33	2148,1	2732,4	1,7275	5,2130	6,9405	
0,375	141,32	0,001081	0,4914	594,81	2140,8	2735,6	1,7528	5,1647	6,9175	
0,40	143,63	0,001084	0,4625	604,74	2133,8	2738,6	1,7766	5,1193	6,8959	
0,45	147,93	0,001088	0,4140	623,25	2120,7	2743,9	1,8207	5,0359	6,8565	
0,50	151,86	0,001093	0,3749	640,23	2108,5	2748,7	1,8607	4,9606	6,8213	
0,55	155,48	0,001097	0,3427	655,93	2097,0	2753,0	1,8973	4,8920	6,7893	
0,60	158,85	0,001101	0,3157	670,56	2086,3	2756,8	1,9312	4,8288	6,7600	
0,65	162,01	0,001104	0,2927	684,28	2076,0	2760,3	1,9627	4,7703	6,7331	
0,70	164,97	0,001108	0,2729	697,22	2066,3	2763,5	1,9922	4,7158	6,7080	
0,75	167,78	0,001112	0,2556	709,47	2057,0	2766,4	2,0200	4,6647	6,6847	
0,80	170,43	0,001115	0,2404	721,11	2048,0	2769,1	2,0462	4,6166	6,6628	
0,85	172,96	0,001118	0,2270	732,22	2039,4	2771,6	2,0710	4,5711	6,6421	
0,90	175,38	0,001121	0,2150	742,83	2031,1	2773,9	2,0946	4,5280	6,6226	
0,95	177,69	0,001124	0,2042	753,02	2023,1	2776,1	2,1172	4,4869	6,6041	
1,00	179,91	0,001127	0,19444	762,81	2015,3	2778,1	2,1387	4,4478	6,5865	
1,10	184,09	0,001133	0,17753	781,34	2000,4	2781,7	2,1792	4,3740	6,5536	
1,20	187,99	0,001139	0,16333	796,65	1986,2	2784,8	2,2166	4,3067	6,5233	
1,30	191,64	0,001144	0,15125	814,93	1972,7	2787,6	2,2515	4,2438	6,4953	
1,40	195,07	0,001149	0,14084	930,30	1959,7	2790,0	2,2842	4,1850	6,4693	
1,50	198,32	0,001154	0,13177	844,89	1947,3	2792,2	2,3150	4,1298	6,4448	

		Volume	massico		Entalpia		Entropia		
		m^3	/kg		[kJ/kg]			[kJ/(kgK)]	
Pressione	Temp. T	Liquido	Vapore	Liquido	Vaporizz.	Vapore	Liquido	Vaporizz.	Vapore
assoluta p	[°C]	saturo	saturo	saturo	vaporizz.	saturo	saturo	vaporizz.	saturo
[MPa]	[0]				h			G	
		v_f	v_g	h_f	h_{fg}	h_g	s_f	S_{fg}	S_g
1,75	205,76	0,001166	0,11349	878,50	1917,9	2796,4	2,3851	4,0044	6,3896
2,00	212,42	0,001177	0,09963	908,79	1890,7	2799,5	2,4474	3,8935	6,3409
2,25	218,45	0,001187	0,08875	936,49	1865,2	2801,7	2,5035	3,7937	6,2972
2,5	223,99	0,001197	0,07998	962,11	1841,0	2803,1	2,5547	3,7028	6,2575
3,0	233,90	0,001217	0,06668	1008,42	1795,7	2804,2	2,6457	3,5412	6,1869
3,5	242,60	0,001235	0,05707	1049,75	1753,7	2803,4	2,7253	3,4000	6,1253
4	250,40	0,001252	0,04978	1087,31	1714,1	2801,4	2,7964	3,2737	6,0701
5	263,99	0,001286	0,03944	1154,23	1640,1	2794,3	2,9202	3,0532	5,9734
6	275,64	0,001319	0,03244	1213,35	1571,0	2784,3	3,0267	2,8625	5,8892
7	285,88	0,001351	0,02737	1267,00	1505,1	2772,1	3,1211	2,6922	5,8133
8	295,06	0,001384	0,02352	1316,64	1441,3	2758,0	3,2068	2,5364	5,7432
9	303,40	0,001418	0,02048	1363,26	1378,9	2742,1	3,2858	2,3915	5,6772
10	311,06	0,001452	0,018026	1407,56	1317,1	2724,7	3,3596	2,2544	5,6141
11	318,15	0,001489	0,015987	1450,1	1255,5	2705,6	3,4295	2,1233	5,5527
12	324,75	0,001527	0,014263	1491,3	1193,6	2684,9	3,4962	1,9962	5,4924
13	330,93	0,001567	0,012780	1531,5	1130,7	2662,2	3,5606	1,8718	5,4323
14	336,75	0,001611	0,011485	1571,1	1066,5	2637,6	3,6232	1,7485	5,3717
15	342,24	0,001658	0,010337	1610,5	1000,0	2610,5	3,6848	1,6249	5,3098
16	347,44	0,001711	0,009306	1650,1	936,6	2580,6	3,7461	1,4994	5,2455
17	352,37	0,001770	0,008364	1690,3	856,9	2547,2	3,8079	1,3698	5,1777
18	357,06	0,001840	0,007489	1732,0	777,1	2509,1	3,8715	1,2329	5,1044
19	361,54	0,001924	0,006657	1776,5	688,0	2464,5	3,9388	1,0839	5,0228
20	365,81	0,002036	0,005834	1826,3	583,4	2409,7	4,0139	0,9130	4,9269
21	369,89	0,002207	0,004952	1884,4	446,2	2334,6	4,1075	0,6938	4,8013
22	373,80	0,002742	0,003568	2022,2	143,4	2165,6	4,3110	0,2216	4,5327
22,09	374,14	0,003155	0,003155	2099,3	0	2099,3	4,4298	0	4,4298

Proprietà termodinamiche dell'acqua: vapore surriscaldato*

Unità: T[°C], $v[m^3/kg]$, h[kJ/kg], s[kJ(kgK)] (Temperatura di saturazione tra parentesi)

T	v	h	S	V	h	S	V	h	S
	p = 0.0)10 MPa (45		p = 0.0)50 MPa (81		p = 0.	10 MPa (99,	l .
Sat.	14,674	2584,7	8,1502	3,240	2645,9	7,5939	1,6940	2675,5	7,3594
50	14,869	2592,6	8,1749	- ,		. ,	,		. ,
100	17,196	2687,5	8,4479	3,418	2682,5	7,6947	1,6958	2676,2	7,3614
150	19,512	2783,0	8,6882	3,889	2780,1	7,9401	1,9364	2776,4	7,6134
200	21,825	2879,5	8,9038	4,356	2877,7	8,1580	2,172	2875,3	7,8343
250	24,136	2977,3	9,1002	4,820	2976,0	8,3556	2,406	2974,3	8,0333
300	26,445	3076,5	9,2813	5,284	3075,5	8,5373	2,639	3074,3	8,2158
400	31,063	3279,6	9,6077	6,209	3278,9	8,8642	3,103	3278,2	8,5435
500	35,679	3489,1	9,8978	7,134	3488,7	9,1546	3,565	3488,1	8,8342
600	40,295	3705,4	10,1608	8,057	3705,1	9,4178	4,028	3704,7	9,0976
700	44,911	3928,7	10,4028	8,981	3928,5	9,6599	4,490	3928,2	9,3398
800	49,526	4159,0	10,6281	9,904	4158,9	9,8852	4,952	4158,6	9,5652
900	54,141	4396,4	10,8396	10,828	4396,3	10,0967	5,414	4396,1	9,7767
1000	58,757	4640,6	11,0393	11,751	4640,5	10,2964	5,875	4640,3	9,9764
1100	63,372	4891,2	11,2287	12,674	4891,1	10,4859	6,337	4891,0	10,1659
1200	67,987	5147,8	11,4091	13,597	5147,7	10,6662	6,799	5147,6	10,3463
1300	72,602	5409,7	11,5811	14,521	5409,6	10,8382	7,260	5409,5	10,5183
1500		20 MPa (120			30 MPa (133			10 MPa (143	
Sat.	0,8857	2706,7	7,1272	0,6058	2725,3	6,9919	0,4625	2738,6	6,8959
150	0,9596	2768,8	7,2795	0,6339	2761,0	7,0778	0,4708	2752,8	6,9299
200	1,0803	2870,5	7,5066	0,7163	2865,6	7,3115	0,5342	2860,5	7,1706
250	1,1988	2971,0	7,7086	0,7964	2967,6	7,5166	0,5951	2964,2	7,3789
300	1,3162	3071,8	7,8926	0,8753	3069,3	7,7022	0,6548	3066,8	7,5662
400	1,5493	3276,6	8,2218	1,0315	3275,0	8,0330	0,7726	3273,3	7,8985
500	1,7814	3487,1	8,5133	1,1867	3486,0	8,3251	0,8893	3484,9	8,1913
600	2,013	3704,0	8,7770	1,3414	3703,2	8,5892	1,0055	3702,4	8,4558
700	2,244	3927,6	9,0194	1,4957	3927,1	8,8319	1,1215	3926,5	8,6987
800	2,475	4158,2	9,2449	1,6499	4157,8	9,0576	1,2372	4157,3	8,9244
900	2,706	4395,8	9,4566	1,8041	4395,4	9,2692	1,3529	4395,1	9,1362
1000	2,937	4640,0	9,6563	1,9581	4639,7	9,4690	1,4685	4639,4	9,3360
1100	3,3168	4890,7	9,8458	2,1121	4890,4	9,6585	1,5840	4890,2	9,5256
1200	3,399	5147,3	10,0262	2,2661	5147,1	9,8389	1,6996	5146,8	9,7060
1300	3,630	5409,3	10,1982	2,4201	5409,0	10,0110	1,8151	5408,8	9,8780
		50 MPa (151			60 MPa (158			30 MPa (170	
Sat.	0,3749			0,3157		6,7600	0,2404	2769,1	
200	0,4249	2855,4	7,0592	0,3520	2850,1	6,9665	0,2608	2839,3	6,8158
250	0,4744	2960,7	7,2709	0,3938	2957,2	7,1816	0,2931	2950,0	7,0384
300	0,5226	3064,2	7,4599	0,4344	3061,6	7,3724	0,3241	3056,5	7,2328
350	0,5701	3167,7	7,6329	0,4742	3165,7	7,5464	0,3544	3161,7	7,4089
400	0,6173	3271,9	7,7938	0,5137	3270,3	7,7079	0,3843	3267,1	7,5716
500	0,7109	3483,9	8,0873	0,5920	3482,8	8,0021	0,4433	3480,6	7,8673
600	0,8041	3701,7	8,3522	0,6697	3700,9	8,2674	0,5018	3699,4	8,1333
700	0,8969	3925,9	8,5952	0,7472	3925,3	8,5107	0,5601	3924,2	8,3770
800	0,9896	4156,9	8,8211	0,8245	4156,5	8,7367	0,6181	4155,6	8,6033
900	1,0822	4394,7	9,0329	0,9017	4394,4	8,9486	0,6761	4393,7	8,8153
1000	1,1747	4639,1	9,2328	0,9788	4638,8	9,1485	0,7340	4638,2	9,0153
1100	1,2672	4889,9	9,4224	1,0559	4889,6	9,3381	0,7919	4889,1	9,2050
1200	1,3596	5146,6	9,6029	1,1330	5146,3	9,5185	0,8497	5145,9	9,3855
1300	1,4521	5408,6	9,7749	1,2101	5408,3	9,6906	0,9076	5407,9	9,5575
*111	-,	2.30,0	7,1117	-,	2.50,5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,2070	0.01,5	-,00,0

^{*}Il valore dell'energia u si ottiene, per la definizione di entalpia, da u=h-pv

T	V	h	S	V	h	S	V	h	S
	p = 1,0	00 MPa (179	,91°C)		20 MPa (187	,88°C)	p = 1,4	10 MPa (195	,07°C)
Sat.	0,19444	2778,1	6,5865	0,16333	2784,8	6,5233	0,14084	2790,0	6,4693
200	0,2060	2827,9	6,6940	0,16930	2815,9	6,5898	0,14302	2803,3	6,4975
250	0,2327	2942,6	6,9247	0,19234	2935,0	6,8294	0,16350	2927,2	6,7467
300	0,2579	3051,2	7,1229	0,2138	3045,8	7,0317	0,18228	3040,4	6,9534
350	0,2825	3157,7	7,3011	0,2345	3153,6	7,2121	0,2003	3149,5	7,1360
400	0,3066	3263,9	7,4651	0,2548	3260,7	7,3774	0,2178	3257,5	7,3026
500	0,3541	3478,5	7,7622	0,2946	3476,3	7,6759	0,2521	3474,1	7,6027
600	0,4011	3697,9	8,0290	0,3339	3696,3	7,9435	0,2860	3694,8	7,8710
700	0,4478	3923,1	8,2731	0,3729	3922,0	8,1881	0,3195	3920,8	8,1160
800	0,4943	4154,7	8,4996	0,4118	4153,8	8,4148	0,3528	4153,0	8,3431
900	0,5407	4392,9	8,7118	0,4505	4392,2	8,6272	0,3861	4391,5	8,5556
1000	0,5871	4637,6	8,9119	0,4892	4637,0	8,8274	0,4192	4636,4	8,7559
1100	0,6335	4888,6	9,1017	0,5278	4888,0	9,0172	0,4524	4887,5	8,9457
1200	0,6798	5145,4	9,2822	0,5665	5144,9	9,1977	0,4855	5144,4	9,1262
1300	0,7261	5407,4	9,4543	0,6051	5407,0	9,3698	0,5186	5406,5	9,2984
	p = 1,6	60 MPa (201	,41°C)	p = 1.8	30 MPa (207	,15°C)	p = 2,0	00 MPa (212	,42°C)
Sat.	0,12380	2794,0	6,4218	0,11042	2797,1	6,3794	0,09963	2799,5	6,3409
225	0,13287	2857,3	6,5518	0,11673	2846,7	6,4808	0,10377	2835,8	6,4147
250	0,14184	2919,2	6,6732	0,12497	2911,0	6,6066	0,11144	2902,5	6,5453
300	015862	3034,8	6,8844	0,14021	3029,2	6,8226	0,12547	3023,5	6,7664
350	0,17456	3145,4	7,0694	0,15457	3141,2	7,0100	0,13857	3137,0	6,9563
400	0,19005	3254,2	7,2374	0,16847	3250,9	7,1794	0,15120	3247,6	7,1271
500	0,2203	3472,0	7,5390	0,19550	3469,8	7,4825	0,17568	3467,6	7,4317
600	0,2500	3693,2	7,8080	0,2220	3691,7	7,7523	0,19960	3690,1	7,7024
700	0,2794	3919,7	8,0535	0,2482	3918,5	7,9983	0,2232	3917,4	7,9487
800	0,3086	4152,1	8,2808	0,2742	4151,2	8,2258	0,2467	4150,3	8,1765
900	0,3377	4390,8	8,4935	0,3001	4390,1	8,4386	0,2700	4389,4	8,3895
1000	0,3668	4635,8	8,6938	0,3260	4635,2	8,6391	0,2933	4634,6	8,5901
1100	0,3958	4887,0	8,8837	0,3518	4886,4	8,8290	0,3166	4885,9	8,7800
1200	0,4248	5143,9	9,0643	0,3776	5143,4	9,0096	0,3398	5142,9	8,9607
1300	0,4538	5406,0	9,2364	0,4034	5405,6	9,1818	0,3631	5405,1	9,1329
		50 MPa (223			00 MPa (233		p = 3.5	50 MPa (242	,60°C)
Sat.	0,07998	2803,1	6,2575	0,06668	2804,2	6,1869	0,05707	2803,4	6,1253
225	0,08027	2806,3	6,2639						
250	0,08700	2880,1	6,4085	0,07058		6,2872	0,05872	2829,2	6,1749
300	0,09890	3008,8	6,6438	0,08114	2993,5	6,5390	0,06842	2977,5	6,4461
350	0,10976	3126,3	6,8403	0,09053	3115,3	6,7428	0,07678	3104,0	6,6579
400	0,12010	3239,3	7,0148	0,09936	3230,9	6,9212	0,08453	3223,3	6,8405
450	0,13014	3350,8	7,1746	0,10787	3344,0	7,0834	0,09196	3337,2	7,0052
500	0,13998	3462,1	7,3234	0,11619	3456,5	7,2338	0,09918	3450,9	7,1572
600	0,15930	3686,3	7,5960	0,13243	3682,3	7,5085	0,11324	3678,4	7,4339
700	0,17832	3914,5	7,8435	0,14838	3911,7	7,7571	0,12699	3908,8	7,6837
800	0,19716	4148,2	8,0720	0,16414	4145,9	7,9862	0,14056	4143,7	7,9134
900	0,21590	4387,6	8,2853	0,17980	4385,9	8,1999	0,15402	4384,1	8,1276
1000	0,2346	4633,1	8,4861	0,19541	4631,6	8,4009	0,16743	4630,1	8,3288
1100	0,2532	4884,6	8,6762	0,21098	4883,3	8,5912	0,18080	4881,9	8,5192
1200	0,2718	5141,7	8,8569	0,22652	5140,5	8,7720	0,19415	5139,3	8,7000
1300	0,2905	5404,0	9,0291	0,24206	5402,8	8,9442	0,20749	5401,7	8,8723

^{*}Il valore dell'energia u si ottiene, per la definizione di entalpia, da u=h-pv

T	V	h	S	V	h	S	V	h	S
	p = 4.0	0 MPa (250,	40°C)	p = 4.	5 MPa (257,	49°C)	p = 5.0	0 MPa (263,	99°C)
Sat.	0,04978	2801,4	6,0701	0,04406	2798,3	6,0198	0,03944	2794,3	5,9734
275	0,05457	2886,2	6,2285	0,04730	2863,2	6,1401	0,04141	2838,2	6,0544
300	0,05884	2960,7	6,3615	0,05135	2943,1	6,2828	0,04532	2924,5	6,2084
350	0,06645	3092,5	6,5821	0,05840	3080,6	6,5131	0,05194	3068,4	6,4493
400	0,07341	3213,6	6,7690	0,06475	3204,7	6,7047	0,05781	3195,7	6,6459
450	0,08002	3330,3	6,9363	0,07074	3323,3	6,8746	0,06330	3316,2	6,8186
500	0,08643	3445,3	7,0901	0,07651	3439,6	7,0301	0,06857	3433,8	6,9759
600	0,09885	3674,4	7,3688	0,08765	3670,5	7,3110	0,07869	3666,5	7,2589
700	0,11095	3905,9	7,6198	0,09847	3903,0	7,5631	0,08849	3900,1	7,5122
800	0,12287	4141,5	7,8502	0,10911	4139,3	7,7942	0,09811	4137,1	7,7440
900	0,13469	4382,3	8,0647	0,11965	4380,6	8,0091	0,10762	4378,8	7,9593
1000	0,14645	4628,7	8,2662	0,13013	4627,2	8,2108	0,11707	4625,7	8,1612
1100	0,15817	4880,6	8,4567	0,14056	4879,3	8,4015	0,12648	4878,0	8,3520
1200	0,16987	5138,1	8,6376	0,15098	5136,9	8,5825	0,13587	5135,7	8,5331
1300	0,18156	5400,5	8,8100	0,16139	5399,4	8,7549	0,14526	5398,2	8,7055
	p = 6,0	0 MPa (275,	64°C)	p = 7,	0 MPa (285,	88°C)	p = 8,0	0 MPa (295,	06°C)
Sat.	0,03244	2784,3	5,8892	0,02737	2772,1	5,8133	0,02352	2758,0	5,7432
300	0,03616	2884,2	6,0674	0,02947	2838,4	5,9305	0,02426	2785,0	5,7906
350	0,04223	3043,0	6,3335	0,03524	3016,0	6,2283	0,02995	2987,3	6,1301
400	0,04739	3177,2	6,5408	0,03993	3158,1	6,4478	0,03432	3138,3	6,3634
450	0,05214	3301,8	6,7193	0,04416	3287,1	6,6327	0,03817	3272,0	6,5551
500	0,05665	3422,2	6,8803	0,04814	3410,3	6,7975	0,04175	3398,3	6,7240
550	0,06101	3540,6	7,0288	0,05195	3530,9	6,9486	0,04516	3521,0	6,8778
600	0,06525	3658,4	7,1677	0,05565	3650,3	7,0894	0,04845	3642,0	7,0206
700	0,07352	3894,2	7,4234	0,06283	3888,3	7,3476	0,05481	3882,4	7,2812
800	0,08160	4132,7	7,6566	0,06981	4128,2	7,5822	0,06097	4123,8	7,5173
900	0,08958	4375,3	7,8727	0,07669	4371,8	7,7991	0,06702	4368,3	7,7351
1000	0,09749	4622,7	8,0751	0,08350	4619,8	8,0020	0,07301	4616,9	7,9384
1100	0,10536	4875,4	8,2661	0,09027	4872,8	8,1933	0,07896	4870,3	8,4300
1200	0,11321	5133,3	8,4474	0,09703	5130,9	8,3747	0,08489	5128,5	8,3115
1300	0,12106	5396,0	8,6199	0,10377	5393,7	8,5473	0,09080	5391,5	8,4842
		0 MPa (303,	40°C)		0 MPa (311		p = 12	5 MPa (327	,89°C)
Sat.	0,02048	2742,1	5,6772	0,018026	2724,7	5,6141	0,013495	2673,8	5,4624
325	0,02327	2856,0	5,8712	0,019861	2809,1	5,7568			
350	0,02580	2956,6	6,0361	0,02242	2923,4	5,9443	0,016126		5,7118
400	0,02993	3117,8	6,2854	0,02641	3096,5	6,2120	0,02000	3039,3	6,0417
450	0,03350	3256,6	6,4844	0,02975	3240,9	6,4190	0,02299	3199,8	6,2719
500	0,03677	3386,1	6,6576	0,03279	3373,7	6,5966	0,02560	3341,8	6,4618
550	0,03987	3511,0	6,8142	0,03564	3500,9	6,7561	0,02801	3475,2	6,6290
600	0,04285	3633,7	6,9589	0,03837	3625,3	6,9029	0,03029	3604,0	6,7810
650	0,04574	3755,3	7,0943	0,04101	3748,2	7,0398	0,03248	3730,4	6,9218
700	0,04857	3876,5	7,2221	0,04358	3870,5	7,1687	0,03460	3855,3	7,0536
800	0,05409	4119,3	7,4596	0,04859	4114,8	7,4077	0,03869	4103,6	7,2965
900	0,05950	4364,8	7,6783	0,05349	4361,2	7,6272	0,04267	4352,5	7,5182
1000	0,06485	4614,0	7,8821	0,05832	4611,0	7,8315	0,04658	4603,8	7,7237
1100	0,07016	4867,7	8,0740	0,06312	4865,1	8,0237	0,05045	4858,8	7,9165
1200	0,07544	5126,2	8,2556	0,06789	5123,8	8,2055	0,05430	5118,0	8,0987
1300	0,08072	5389,2	8,4284	0,07265	5387,0	8,3783	0,05813	5386,4	8,2717

^{*}Il valore dell'energia u si ottiene, per la definizione di entalpia, da u=h-pv